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ABSTRACT
Event detection applications have gained significant attention with
the rise of user-generated spatio-temporal data over the past decade.
However, building event detection applications still encounter high
cost and effort due to lack of support in existing data management
systems. This paper envisions a holistic system approach to support
an efficient and easy-to-use system infrastructure for building event
detection applications. We outline our vision for representing event
detection applications as a set of layered abstractions and discuss
potential pathways to realize these abstractions at the system level.
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1 INTRODUCTION
Detecting events from user-generated data has received a signif-
icant attention over the past decade from data management and
analysis researchers [1–4, 6–8, 11–16, 18–20, 23, 24, 26–29] as well
as major corporations such as Thomson Reuters that detects events
from news data [14, 16], and governmental units such as the US De-
partment of Health and Human Services that tracks health-related
events [17] and the US Geological Survey that monitors earthquake
events [5] from social media data. The increasing attention is at-
tributed to the availability of massive event-related data that has
started to dramatically increase since 2008, the year when Inter-
net connectivity has coupled with mobile devices, as it became
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more accessible for users to contribute data to online platforms. We
are currently witnessing ∼48% of Internet traffic through mobile
devices worldwide where 21% of such traffic is on social media
platforms [21]. These percentages are even significantly higher
in some localities, e.g., UAE and Saudi Arabia encounter 96% and
88%, respectively, of mobile Internet users [22]. As a result, tens of
millions of users can post data, which is associated with location
and time information, around the clock from mobile devices, which
has led to unprecedented rates of user-generated spatio-temporal
data.

Such an unprecedented explosion of user-generated data, along
with its inherent spatio-temporal nature, has motivated a wide
variety of event-related applications, ranging from critical and life-
saving applications to entertainment and leisure applications. For
example, several efforts have successfully designed an early earth-
quake detection systems from Twitter feeds, where up to 75% of
earthquake detections occurred within the first two minutes from
the initial impact and alerts were disseminated earlier than offi-
cial authorities’ first warnings in several cases [7, 8, 20]. Another
example of critical applications is detecting criminal and riot activi-
ties [2, 15]. Less critical applications include detecting traffic jams
events and road accidents to alarm commuters [1, 12, 23, 24, 27]
up to discovering breaking news faster than traditional reporting
tools [16, 26] and detecting leisure events such as local music con-
certs, festivals, and celebrations [4, 13].

Despite the plethora of research techniques that investigated
supporting effective event detection functionality for different types
of events [1–4, 6–8, 11–16, 18–20, 23, 24, 26–29], that are studied
in recent surveys [10, 25], it is still labor intensive for developers
to build event applications on top of the available rich data sources.
In fact, addressing challenges in end-to-end data-to-knowledge
pipelines is identified as one of the significant challenges in the
Beckman report on database research [9]. Quoting the report ”it is
still an extremely labor-intensive journey from raw data to actionable
knowledge”, thirty top-notch database researchers concluded. This
challenge is apparent in event detection applications, where none
of the existing systems support scalable infrastructures for ease of
building event detection tasks from data acquisition and preparing,
to deploying and monitoring. As a result, whoever builds an event
detection application needs to develop major components from
scratch, which limits both usability and efficiency and hinders the
widespread of using event detection techniques in real-life use
cases.

In this paper, we envision a declarative system interface that
provides SQL-like language to define event detection pipelines.
The language allows users to specify high-level details of different
phases of the pipeline from preprocessing of different input data
sources to producing event summaries for end-users. Under the
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hood, the system will encapsulate efficient end-to-end modules for
building event detection applications. Towards realizing this vision,
researchers need to address several challenges. The first challenge
is representing event detection with a set of abstract modules that
exploit the existing rich literature of event detection techniques.
These abstractions should include the common utilities to support
(a) a wide variety of events types, e.g., earthquakes, crimes, traffic
jams, and music festivals, (b) diverse data sources and formats, e.g.,
social media and news feeds from different sources, (c) operating
in online and offline modes to detect new events from live streams
and historical data, and (d) different levels of time-sensitivity of de-
tected events, e.g., crime events are more time-sensitive than traffic
jams. Meeting all such requirements in a unified framework is a
significant research contribution from a system perspective. Such
abstract modules will serve as building blocks specialized for event
applications, similar in spirit to SELECT-PROJECT-JOIN building
blocks for relational database queries. The second challenge is re-
alizing the developed abstractions in existing data management
systems. This realization by itself will require several significant
system contributions that include developing optimization algo-
rithms to support such abstractions efficiently at a system-level. In
analogy with the previous example, plenty of algorithms have been
developed to efficiently support Join operations and ordering of
different relational operators in database systems.

The rest of the paper outlines our vision for the system ab-
stractions and potential pathways to realize them in existing data
management systems. Section 2 gives an overview of the existing
literature of event detection techniques. Then, Sections 3 and 4
outlines our envisioned framework and its potential realizations in
existing systems. Finally, Section 5 concludes the paper.

2 LITERATURE OVERVIEW
Towards our vision for a unified framework for event detection ap-
plications, we have extensively surveyed the landscape of existing
event detection techniques. The scope of this paper is not providing
a detailed review of this rich literature. Recent surveys have pro-
vided a detailed review [10, 25]. However, we give a summarized
overview of this literature as a foundation for our envisioned ab-
stractions for the unified framework. The rest of this section gives
a bird’s-eye view of the existing literature.

Figure 1 shows an overview of the event detection literature.
The literature has two major types of techniques: (1) type 1 tech-
niques for detecting arbitrary events and (2) type 2 techniques
for detecting predefined types of events. Each of these two types has
several sub-categories as depicted in Figure 1. For type 1 techniques,
the main objective is detecting any arbitrary event without any
prior information about the event type or context. Therefore, the
heart of this type is grouping similar data records into cohesive
stories to generate a set of events. As a result, the sub-categories of
type 1 techniques are categorized based on the grouping method,
which is dominated by clustering algorithms but still includes lexi-
cal, statistical, and graph-based techniques. For type 2 techniques,
there is prior information about the type of events to be detected
and their context, e.g., earthquakes, crimes, or traffic jams. The
event type is used to induce contextual information, e.g., crime-
related keywords, that can be used to classify data records whether
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Figure 1: Bird’s-eye View of Event Detection Literature

or not they are relevant to this type of events. Thus, the heart of
type 2 techniques is a classification model that decides on the rele-
vance of data records to the event type. This classification could be
learning-based or lexical-based as depicted in Figure 1.

In the literature, various data sources were utilized to discover
events. However, the majority of detection techniques were de-
signed to process one data source (e.g., Twitter) at a time. Therefore,
our envisioned framework will handle one data source. Combining
multiple data sources for event detection is out of the scope of this
paper.

3 A UNIFIED FRAMEWORK FOR EVENT
DETECTION

In this section, we present our vision for a unified end-to-end frame-
work for event detection. The envisioned framework consists of
high-level abstractions that can be supported at a system level
through a declarative language interface. Based on our extensive
survey of the literature, Figure 2 depicts our envisioned unified
framework. The framework digests input data that are organized
into a scalable data store. Input data can be query-based when
possible (e.g., retrieve records with certain keywords). Then, only
relevant data from the data source are pipelined into five major
sequential layers, namely, data preprocessing, feature extraction and
selection, candidate event generation, candidate event scoring, and
event postprocessing. Finally, the output events are returned to end
users for visualization and further analysis. The rest of this section
briefly outlines the declarative language interface and the abstrac-
tions of each of the five layers in Figure 2.

(1) Language Interface. This interface will allow users to create
detection techniques using a declarative SQL-like language where
the high-level details of the detection pipeline can be defined. The
details include the data source, any filtering rules to discard irrele-
vant data, and a specific event detection algorithm, and whether
the technique works in online or offline settings. The SQL-like
command will be translated into an event detection pipeline and
executed inside the supported system.

(2) Data Preprocessing Layer. This layer will be responsible
for raw data acquisition and preparation of input data records for
subsequent layers of processing. The preprocessing layer will in-
clude a diverse set of tasks such as filtering non-event data, indexing,
and language detection. The specific set of needed preprocessing
tasks depend on the input data and application. For example, news
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Figure 2: Envisioned Unified Framework Architecture

items come with known languages; thus, no need for language
detection that might be needed with social media free text. We next
briefly highlight two of the main preprocessing tasks.

The preprocessing filtering task discards non-event data, e.g.,
spams, chit-chats, and advertisements. This process is necessary
to have reliable and high accurate results, and to reduce the com-
putation needed. Moreover, other filtering predicates are used in
specific techniques; for example, spatial and temporal predicates
are used to filter out data of regions and periods that do not fall in
the range of interest.

A handful of detection techniques take advantage of spatial,
temporal, and spatio-temporal indexes to effectively access data
within certain spatial and temporal ranges of interest. The use of
indexes is due to the spatial and temporal nature of event-related.
For example, many techniques employ a simple grid index of the
space for localized event discovery, and so on.

(3) Feature Extraction and Selection Layer. This layer will
encapsulate several techniques that take preprocessed data records
and associates each of them with various features to be used in
subsequent layers. The feature extraction will be mostly through au-
tomated techniques, while feature selection will be defined within
the pipeline specifications through the declarative language inter-
face. Examples of significant features are keywords, named entities,
and spatial and temporal information. Basic features such as spatial
locations are directly extracted while other sophisticated features
such as semantic features and bursty keywords are not. Techniques
that are used in feature extraction are diverse and include text min-
ing and natural language processing. In general, this layer involves

finding features of the data that exhibit high-level characteristics
for events generation.

(4) EventCandidateGeneration Layer.The input to this layer
is the data records associated with different features that were ex-
tracted in previous stages. The output is a set of candidate events
that are generated using either (a) grouping techniques for detecting
arbitrary events (type 1 techniques as in Section 2), or (b) classifi-
cation techniques for detecting predefined types of events (type 2
techniques), e.g., earthquakes, crimes, and traffic jams. The group-
ing techniques will include clustering, lexical-based, graph-based,
and statistical techniques. However, clustering will represent the
dominated type of grouping techniques in this layer due to its pop-
ularity and effectiveness in many existing research methods. On
the other hand, the classification techniques will be either learning-
based or lexical-based techniques according to the existing liter-
ature. However, learning-based classification, e.g., support vector
machines and regression models, will represent the vast majority
of encapsulated techniques.

(4) Event Candidate Scoring/Labeling Layer. This layer fur-
ther enhances the set of generated candidate events from the previ-
ous layer through scoring and labeling. When detecting arbitrary
events, the initial set of candidate events usually have a lot of noisy
groups that do not represent actual events. Thus, the set of can-
didate groups are scored or labeled based on their group features,
e.g., temporal diffusion, spatial compactness, newsworthiness, or
keywords burstiness. Then, top scored candidates or most confi-
dently labeled groups are selected as output events to the next
layer while the rest of candidates are discarded as noisy groups.
The declarative interface will allow end users to specify specific
scoring or labeling methods to define this layer of the pipeline. This
specification will depend on the underlying supported application.
For example, news event discovery applications will prefer news-
worthiness ranking measure, while localized event detection will
prefer spatial localness.

(5) Event Postprocessing Layer. In the last phase of the event
detection pipeline, output events are postprocessed to be readily
usable for end users and their analysis tasks. For example, events are
summarized and categorized into topics, e.g., politics or cultural, or
being attached a spatial location to pin them on maps. At this phase,
an event is mostly represented as a group of raw data records that
are collectively about the event plus all themeta-data extracted from
previous phases such as features, and scores. The postprocessing
tasks involve helping end users interpret and analyze the event, or
even track the event updates. In some applications, events expire
or evolve overtime after more data arrive. Thus, it is essential to
allow users to expire or follow up on events to distinguish it from
new coming and similar events.

4 POTENTIAL REALIZATION PATHWAYS
While realizing the envisioned framework from scratch makes it
fully optimized for event detection, it is labor intensive. In contrast,
realizing the framework in existing data management systems will
widen its user-base and utilize the system’s data store and execution
engine. In the following, we briefly discuss three possible pathways
to realize the envisioned framework in existing data management
systems highlighting their potential advantages and disadvantages.
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(1) On-top Approach. One approach to realize the envisioned
framework is developing a standalone library on top of existing sys-
tems, e.g., Apache Spark ML Pipelines. In this case, the framework
treats the underlying system as a black box where the framework
layers will be completely decoupled from the internal operations
of the underlying system that works as a data store and run-time
engine. Also, the framework will live outside the codebase of the
core engine giving the main advantage of relative simple realization
as the complexities of the system internals are hidden. However, it
will not fully utilize the optimization opportunities when realizing
the framework modules inside the system. For example, performing
early pruning based on system indexes could avoid a significant
irrelevant data transfer cost to upper level layers.

(2) Built-in Approach. Another approach to realize the envi-
sioned framework is to tightly couple its different layers with the
core system engine whenever possible. For example, data prepro-
cessing is coupled with the system indexing layers, which will
be injected with new operations such as location extraction and
language detection. Feature extraction and selection layer will be
realized as a new intermediate layer between the indexing and ma-
chine learning pipelines, and so on. The expected performance gains
of this approach is significant as it has access to all internal system
resources leading to full utilization of all potential optimization
opportunities. However, it requires high realization cost to inject
the framework layers in the codebase of the underlying system. In
addition, managing any changes to the framework layers will also
require certain level of expertise and effort, which is expected to
limit the system extensibility and community contributions.

(3) Centrist Approach. A third approach is to realize some
of the low-level operations, e.g., filtering, indexing, and features
extraction, as built-in internal operations and derive and append
other operations on-top of these basic operations. This approach
will combine half ways of both simplicity and efficiency of the pre-
vious two approaches. Although this approach may sound ideal, it
will require a careful selection of the underlying data management
system as its specifications will highly affect the realization sim-
plicity and performance gains. In addition, it requires a thoughtful
and non-straightforward design of the built-in and on-top opera-
tions to cover a wide variety of use cases while still maintains the
framework extensibility.

5 CONCLUSION
This paper envisioned a unified framework to support a wide va-
riety of event detection techniques in existing data management
systems. The main goal is to significantly increasing the impact
of the existing rich literature of event detection by simplifying
building such applications for end users. To this end, the paper
has proposed a set of abstractions that are organized in five main
layers. These abstractions work as building blocks for event de-
tection techniques, so an entire event detection pipeline can be
defined. These layered abstractions are envisioned to be incorpo-
rated with existing data management systems, providing a variety
of configuration options through a declarative language interface.
With realizing such a layered approach, the cost and efforts for
building a new event detection application will be dramatically
reduced, which will broaden the impact of such critical applications

in different domains. The paper also discussed three potential re-
alization pathways to couple the proposed framework with with
existing data management systems highlighting the pros and cons
of each pathway.
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